

201 Candlewood Crescent Waterloo, Ontario N2L 5T3 [t] 519-804-1223 [e] info@hadlockconsulting.ca [w] www.hadlockconsulting.ca

Design for Zero Energy Building

Lambton Shores Administration Building

Date Completed

April 19, 2021

Prepared for

Skinner & Skinner Architects 482 Riverside Drive London, ON N6H 2R7

Prepared by

Christopher Hadlock, P.Eng. Founder & Senior Energy Modeler HADLOCK CONSULTING energy. sustainability. customized solutions.

[t] 519-804-1223[e] info@hadlockconsulting.ca[w] www.hadlockconsulting.ca

1. OVERVIEW

Energy models were created for the Lambton Shores Administration Building project in order to assess the viability of a Net Zero Energy Building (NZEB). This report summarizes the energy modeling inputs and the results of the study.

1.1 PROJECT SCOPE AND METHODOLOGY

Project Name:

Lambton Shores Administration Building

Project Goals:

- Achieve a Zero Net Energy (ZNE) Building as recognized by the New Buildings Institute
 - EUI Goal: Meet the Zero Energy Performance Index (zEPI) of 27.9 kBtu/ft² (87.9 kWh/m²) based on predicted EUI from energy model
 - PV Goal: Provide on-site renewal energy generation that generates at least as much energy as the building consumes over a period of one year

Energy Modeling Software and Notes:

- Software: eQuest v3.65, version 3.65, DOE 2.2
- All of the building components have been considered, including building envelope, lighting, plug loads, HVAC, and service water heating.
- The results shown herein are based on the output of the hourly energy simulation software and are reflective of the design parameters listed herein as well various modeling assumptions. While the work was performed with reasonable care and in accordance with the latest professional standards, the actual energy use of the building will vary based on factors such as weather, workmanship, depreciation of the thermal resistance of building materials, building operation, maintenance, etc.

Design Documents Referenced:

• Architectural Drawings: Issued for Budgeting (April 16, 2020)

energy. sustainability. customized solutions.

1.2 **Building Parameters**

Location	9575 Port Franks Road, Thedford, Ontario						
Weather File	London, Ontario						
Building Type	Office						
Site Orientation	Project North is 41 degrees clockwise from True North						
Modeled GFA	12,215 ft ² (refer to Proposed Zoning Layout below)						
Building Storeys	1						
Utility Rates	Electricity: \$0.189/kWh (based on historical utility rates)						
Occupancy Schedules	Office Area: 25 people Council Chamber: 75 peo			75 people			
	Mon-Fri: 8:30 – 16:30 Saturday: unoccupied Sunday: unoccupied			Mon,Wed,Fri: 17:00 - 20:00 Saturday: unoccupied Sunday: unoccupied			
Fan Schedules	System	Mon-Fi	Mon-Fri Satu		ırday	ay Sunday	
	ERV	7:00 – 20	7:00 - 20:00 8:00		– 17:00 Off		
	Lobby	Cycle fans On/Off I			based on thermostat		
	Office Areas	Cycle fa	Cycle fans On/Off based on th			the	rmostat
	Council Chamber	Cycle fa	Cycle fans On/Off based on thermostat			rmostat	
	Vestibule, Utility, Elect/IT Room	Cycle fa	Cycle fans On/Off based on thermostat			rmostat	
Thermostat Setpoints	Location	Cooling Setpoint Heating (°F) (ng S (°I	Setpoint F)	
	Location	Day	Ni	ight	Day		Night
	Occupied Space	75	8	30	70		64
	Vestibule	n/a		65			
	IT	80		60			

energy. sustainability. customized solutions.

Proposed Zoning Layout

Energy Model Elevations – As Viewed from the East

energy. sustainability. customized solutions.

2. PROJECT DESIGN PARAMETERS

2.1 Plant Design

	Hot Water Heater			
Domestic Hot Water Heating	 Type: air-source heat pump 			
	Efficiency: COP of 3			
	 Hot Water Temperature = 140°F 			
	 Location: Adjacent to IT room (use IT room as heat source) 			
Air-Source Heat	Load			
Pump	 Lavatory Fixtures: 8.35 LPM (max) 			
	 Kitchen Fixtures: 8.35 LPM (max) 			
	 Shower Fixtures: 7.6 LPM (max) 			
	 Schedule: based on NECB schedule for office building 			

energy. sustainability. customized solutions.

2.2 HVAC Design

Lunch room	Heat Pump with variable refrigerant flow (heat recovery type)				
Lobby, Office	 Heating: VRF with COP of 4.1 (ARI conditions) 				
area, Council	 Cooling: VRF with EER of 12.7 (ARI conditions) 				
chamber	 Ventilation: provided by ERV 				
VDE Ugat Dump	 Fan power: TSP = 0.5" @ 40% efficiency (0.147 W/cfm) 				
ν πι' πεαι ε απιρ	 Controls: fans cycle ON/OFF based on call for heating/cooling 				
	ERV providing tempered ventilation				
	 Heating: electric resistance heating, SAT 68°F 				
Building	 Cooling: air-cooled DX with EER = 10.9, SAT 68°F 				
Ventilation	 Ventilation: 1,370 cfm (based on Ez = 1.0) with demand-control ventilation (council chambers & lunch/meeting room) 				
ERV with supply and exhaust	 Energy Recovery: enthalpy heat exchanger with 70% sensible & 65% latent effectiveness 				
ducts to each	 Fan Power: TSP = 2.25" (supply & return) @ 48% efficiency 				
spuce	 Fan Control: variable volume (VFDs) 				
	 Controls: fans run continuously during occupied hours with variable air volume (based on DCV) 				
	Force flow heaters				
Vestibule,	 Heating: electric resistance heating 				
Utility room,	 Fan power: TSP = 0.5" @ 40% efficiency (0.147 W/cfm) 				
11 room	 Controls: fans cycle ON/OFF based on call for heating 				
Electric Force	Ductless split AC units (applies to IT room only)				
Flow Heater	Cooling: DX, EER of 12				
	Controls: fans cycle ON/OFF based on call for cooling				

energy. sustainability. customized solutions.

2.3 **Enclosure and Electrical Design**

	Slah an Crada Assemblies				
	Slab-on-Grade Assemblies				
	FIDOIS. CIP concrete, R-13 insulation for 4 feet along perimeter				
	Above-Grade Assemblies				
	• Walls: 3.5 brick, 1 air space, 2 XPS (R-10), 5/8 sheatning, 4				
	wood stud $(n-10)$, 5/8 avosum				
	R_2 R_2 ft^2 hr° $E/Rtu (effective)$				
Envolono	Poof: roof membrane $1/2$ protection board $3/2$ pluwood 24^2				
Not all	truss @ 16" O.C. c/w R-35 insulation, ½" gypsum				
	 R-38 ft²hr°F/Btu (effective) 				
assemblies	 Fixed Windows: Triple Glazed, argon fill, low-e coating on 				
listed	#2/#4, PVC frames				
	 U-0.16 Btu/ft²hr°F, SHGC = 0.47, Tvis = 0.60 (effective) 				
	 <u>Window Wall</u>: Double Glazed, argon fill, low-e coating on #2, 				
	aluminum frames with 9 mm thermal break				
	 U-0.40 Btu/ft²hr°F, SHGC = 0.36, Tvis = 0.60 (effective) 				
	 Window Area: 31% of total exterior gross wall area 				
	Infiltration				
	 0.9 air-changes per hour @ 50 Pascals (use blower door testing) 				
	Interior Lighting				
	 The building average lighting design power density is 0.66 W/ft² 				
Lighting	 Office space: 0.65 W/ft² 				
not all spaces	 Meeting: 0.67 W/ft² 				
are listed	 Council: 0.67 W/ft² 				
	Exterior Lighting				
	Not modeled (TBD)				
	Receptacle Loads				
Other	 Building average receptacle power density is 0.47 W/ft² 				
Electrical	 Office space: 0.50 W/ft² 				
Loads	 Lunch: 0.68 W/ft² 				
not all spaces	 Council: 0.96 W/ft² 				
are listed	IT Loads				
	• 500 Watts				

energy. sustainability. customized solutions.

3. ENERGY RESULTS

3.1 Energy Chart

3.2 Energy Metrics

	Proposed Design	OBC Design	Savings vs OBC
Annual Energy	87,211 kWh/yr	218,713 kWh/yr	60%
Annual EUI	76.8 kWh/m²/yr	193 kWh/m²/yr	60%
Annual GHG's	4,361 kg CO₂e/yr	29,989 kg CO₂e/yr	85%
Annual Cost	\$16,483/yr	\$17,421/yr	5.4%
Estimated Net-Zero Array Size	74 kW	185 kW	60%

3.3 Energy Requirements

The Lambton Shores Administration Building is pursuing NBI's a Zero Energy Building status which requires an EUI of 87.9 kWh/m²/yr.